Wayne Wilson

Wayne Wilson
Position(s)
Associate Professor Biochemistry and Nutrition
Master of Science in Biomedical Sciences
Doctor of Osteopathic Medicine
Office Phone 515-271-1443
Fax 515-271-7081
Email wayne.wilson@dmu.edu
Education
  • Ph.D., biochemistry, University of Dundee
  • B.Sc., biochemistry, University of Dundee

C.  Secreted glucosidases of Trichomonas vaginalis

Human vaginal epithelial cells contain substantial quantities of glycogen.  Several studies have shown that these glycogen stores are depleted in women who are infected with T. vaginalis.  We have established that T. vaginalis grows equally well in growth media containing either glycogen or glucose as a carbon source.  Furthermore, we can detect secreted glucosidase activities in conditioned growth medium.  Preliminary characterization indicates that at least an α-amylase is secreted.  Current work is direct toward the further purification and characterization of the secreted glucosidases.  We hope to identify the enzymes required by T. vaginalis for utilization of exogenous glycogen, ultimately perhaps leading to the identification of novel therapies for trichomoniasis.

Publications

Wilson W.A., Henry M.K., Ewing G., Rehmann J., Canby C.A., Gray J.T., Finnerty E.P. Teach Learn Med 23:256-262. “A prematriculation intervention to improve the adjustment of students to medical school”, 2011

Wilson, W.A., Boyer, M.P., Davis, K.D., Burke, M., and Roach P.J. Can J Microbiol. 56, 408-420. “The subcellular localization of yeast glycogen synthase is dependent upon glycogen content”, 2010

Wilson, W.A., Roach P.J., Montero M., Baroja-Fernández E., Muñoz F.J., Eydallin G., Viale A.M., and Pozueta-Romero J. FEMS Microbiol Rev. 34, 952-985. “Regulation of glycogen metabolism in yeast and bacteria”, 2010

Wilson, W.A., Skurat, A.V., Probst, B., de Paoli-Roach, A.A., Roach, P.J., and Rutter, J.A., Proc. Natl. Acad. Sci. USA 102, 16596-16601. “Control of mammalian glycogen synthase by PAS kinase”. , 2005

Torija M.J., Novo M., Lemassu A., Wilson W, Roach P.J., Francois J., and Parrou J.L., FEBS Lett. 579, 3999-4004. “Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae”. , 2005

de Paula R.M., Wilson W.A., Roach P.J., Terenzi H.F. and Bertolini M.C., FEBS Lett. 579, 2208-2214. “Biochemical characterization of Neurospora crassa glycogenin (GNN), the self-glucosylating initiator of glycogen synthesis”. , 2005

Wilson, W.A., Wang, Z., and Roach, P.J., Biochem. Biophys. Res. Commun. 329, 161-167. “Regulation of yeast glycogen phosphorylase by the cyclin-dependent protein kinase Pho85p” , 2005

de Paula R., Wilson, W.A., Terenzi, H.F., Roach, P.J., and Bertolini M.C., Arch. Biochem. Biophys. 435, 112–124. “GNN is a self-glucosylating protein involved in the initiation step of glycogen biosynthesis in Neurospora crassa”. , 2005

Wilson W.A., Hughes W.E., Tomamichel W. and Roach P.J., Biochem. Biophys. Res. Commun. 320, 416-423. “Increased glycogen storage in yeast results in less branched glycogen”. , 2004

Pederson, B.A., Wilson, W.A., and Roach, P.J., J. Biol. Chem. 279, 13764-13768. “Glycogen synthase sensitivity to glucose-6-P is important for controlling glycogen accumulation in Saccharomyces cerevisiae”. , 2004

Wilson, W.A., Wang, Z. and Roach, P.J., FEBS Lett. 515, 104-108. “Analysis of respiratory mutants reveals new aspects of the control of glycogen accumulation by the cyclin-dependent protein kinase Pho85p”. , 2002

Wilson, W.A., Wang, Z. and Roach, P.J., Mol. Cell Proteomics 1, 232-242. “Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level”. , 2002

Wang, Z., Wilson, W.A., Fujino, M.A. and Roach, P.J., FEBS Lett. 506, 277-280. “The yeast cyclins Pcl6p and Pcl7p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p”. , 2001

Wang, Z., Wilson, W.A., Fujino, M.A. and Roach, P.J., Mol. Cell Biol. 21, 5742-5752. “Control of autophagy and glycogen accumulation by Snf1p, the yeast homolog of the AMP-activated protein kinase”. , 2001

Pederson, B.A., Cheng, C., Wilson, W.A. and Roach, P.J., J. Biol. Chem 275, 27753-27761. , 2000

Wilson, W.A., Mahrenholz, A.M. and Roach, P.J., Mol. Cell Biol. 19, 7020-7030. “Substrate targeting of the yeast cyclin-dependent kinase Pho85p by the cyclin Pcl10p”., 1999