Injection Therapy for Insertional Plantar Fasciitis

James M. Mahoney, DPM
Associate Professor, CPMS

Ruth Ranum, BS
3rd year student, CPMS

Relevant to the content of this presentation, Dr. Mahoney and Ms. Ranum have nothing to disclose.
Objectives

At the conclusion of this presentation, the participant will be able to:

▫ Describe current best evidence for the proper administration and usage of corticosteroids injections for plantar fasciitis
▫ Compare/contrast the efficacy of novel injection treatments for plantar fasciitis
Sorry to disappoint!!!

For any soft tissue injection, no single study identifies:

- The most efficacious steroid to use
- The correct concentration of steroid to administer for clinical efficacy
- The correct interval of time between injections
- The annual limit of injections
Best steroid to use?

- Acetates are more potent (longer duration of action) than phosphates when administered intra-articularly due to increased insolubility \[^{11}\] [Level IV]
- Phosphates are more potent when administered orally and IV \[^{19}\] [Level V]
Best steroid to use?

There may be a geographical preference [Level III]:

- **West**-Kenalog® (triamcinolone acetonide)
- **East**-Depo-Medrol® (methylprednisolone acetate)
- **Midwest**-Aristospan® (triamcinolone hexacetonide)
Efficacy Evidence

• Steroid is better than placebo at 6 and 12 weeks ⁴ [Level II]
• Steroid had successful therapeutic response after 3 months ⁵ [Level II]
• Steroid resulted in significant reduction in pain up to 25.3 months after injection ⁶ [Level II]
• Lower visual analog scales and higher tenderness thresholds at 3 weeks and 3 months ⁷ [Level II]
• Significant pain relief did not continue beyond 4 weeks ⁸ [Level I]
• VAS scores decreased at 2 weeks, 2 months, one year compared to pre-injection level ⁹ [Level II]
• VAS scores decreased at 1 month and further at 6 months ¹⁰ [Level II]
What is correct dosage?

Experienced clinical opinion is the principal rationale for injection practices; little rationale is based on formal scientific evidence ² [Level III]

- **Example: Trigger finger injections**
 - 5 mgs of methylprednisolone was determined to be the effective dose in the literature
 - 32% of respondents used this dose
 - 28% used twice the dose
 - 9% used at least 3 times the dose
Dosage: Are DPM’s using too much?

- **0.5 to 3 mgs (.2 to .75 cc) for soft tissue:** dexamethasone phosphate (4 mg/cc) ³
 [Level V]
- **2 to 10 mgs (.05 to .25 cc) for soft tissue:** triamcinolone acetonide (40 mg/cc) ³
 [Level V]
With or without local anesthetic?

• Mixture does not increase efficacy
• Benefits \(^{12}\) [UpToDate]
 ▫ Less tendency to cause soft tissue atrophy
 ▫ Decrease post-injection flare
 ▫ Immediate relief suggests proper placement of injection (?)

• Risks
 ▫ Lidocaine parabens can decrease bioavailability of acetate steroids \(^{1}\) [Level III]
 ▫ Increase risk of infection using multi-dose vials
Medial or Plantar Injection?

Medial

- 3 hour uptake was uniformly more medial and posterior than the situation of heel tenderness. This may mean that the best injection approach is the medial heel border at a point posterior to the heel tenderness.

13 [Level IV]
Ultrasound-guided or Palpation?

- Equal amount of pain relief, decrease in fascial thickness, and hypoechogenicity in both groups at 2 weeks, 2 months, and 1 year
 - Recurrence rate higher in palpation group [Level II]
 - Ultrasound had lower VAS scores and higher tenderness thresholds [Level II]
- No difference in improvements in fascial thickness, fat pad thickness and VAS [Level II]
- No difference in VAS scores at 6 and 12 weeks [Level II]
Frequency of Injection

- Based solely on intra-articular habits
- From 4 injections per lifetime in any joint with DJD to 12 injections per year in any joint with RA 12 [UpToDate]
Side Effects

- Post-Injection Flare
- Fascial Rupture
- Fat Pad Atrophy
- Neurotoxicity
Side Effect: Post-Injection Flare

• Occurs in 2 to 4% of patients \(^{19}\) [Level V]
• Caused by insoluble (long-acting) agents
 ▫ Methylprednisolone (Depo-Medrol®) and triamcinolone acetonide (Kenalog®) cause it the least among long-acting agents
• Phosphate preparations (e.g. dexamethasone) might be more appropriate
Side Effect: Plantar Fascial Rupture

- Incidence varies from 2.4% \(^{14}\) [Level IV] to 5.7% \(^{15}\) [Level III]
 - DynaMed 2014 lists this as Level 2 (mid-level) evidence
Side Effect: Fat Pad Atrophy

- Atrophy of skin and subQ tissues occurs approximately 1% of the time 19 [Level V]
- Less soluble agents increase risk of soft tissue atrophy 3 [Level V]
- In a survey 16[Level III], 11% used dexamethasone, 35% used triamcinolone acetonide for DeQuervain’s tenosynovitis.
Side Effect: Neurotoxicity(?)

- Intrafascicular injection of steroid into rat sciatic nerve caused varying degrees of neurotoxicity \(^{17}\) [Level V]
 - Dexamethasone - minimal
 - Triamcinolone acetonide - moderate
 - Methylprednisolone - moderate
 - Triamcinolone hexacetonide - severe
Additional Injection Therapies

- Corticosteroid Injection with Peppering Technique
- Autologous Blood Injections
- Platelet Rich Plasma Injections
- Botulinum Toxin Injections
- Ultrasound Guided Dextrose Prolotherapy

All injection therapies require further research
Corticosteroid Injection with Peppering Technique

- Peppering: Inserting, injecting, withdrawing without emerging from the skin, slightly redirecting, and reinserting.
- Area is peppered with small injections
- Prospective randomized trial with 100 pts \(2^0\) [Level II]
 - A: Autologous Blood Injection
 - B: Peppering with Local Anesthetic
 - C: Corticosteroid Injection
 - D: Peppering with Corticosteroid (peppered 40-50 times)
- Results: Improvement in all groups, Group C and D had excellent results – Group D had superior results (p<0.05)
Autologous Blood Injection

- Blood drawn from patient and injected into site of pain
 - attempt to cause a physiological response that will ease pain and increase function
- Not better than corticosteroid injection \(^{20}\) [Level II]
- Triamcinolone injection may be more effective for pain relief than autologous blood injection \(^{21}\) [Level II]
Platelet Rich Plasma Injection

• Blood drawn from patient, spin blood down to produce a layer of platelet rich plasma, and injected into the site of pain
 ▫ Less local inflammation
 ▫ Requires larger blood draw

• PRP no more effective than placebo for Achilles tendinopathy ²² [Level II]
Botulinum Toxin Injection

- Regularly used to paralyze muscles and paralyze or deaden sensory nerves and thereby relieve pain
- Short term improvement in pain and overall foot function \(^{23}\) [Level II]
- At 6 months, botulinum toxin had significantly better results than corticosteroid injections \(^{24}\) [Level II]
Ultrasound Guided Dextrose Prolotherapy

• 80% reported a good to excellent outcome \(^{25}\) [Level IV]
References

12. UpToDate 2014